
ITERATIVE RECONSTRUCTION METHODS FOR NON-CARTESIAN MRI

Jeffrey A. Fessler

EECS Dept., The University of Michigan
fessler@umich.edu

Douglas C. Noll∗

BME Dept., The University of Michigan
dnoll@umich.edu

ABSTRACT

For magnetic resonance imaging (MRI) with Cartesian k-space
sampling, a simple inverse FFT usually suffices for image re-
construction. More sophisticated image reconstruction meth-
ods are needed for non-Cartesian k-space acquisitions. Reg-
ularized least-squares methods for image reconstruction in-
volve minimizing a cost function consisting of a least-squares
data fit term plus a regularizing roughness penalty that con-
trols noise in the image estimate. Iterative algorithms areusu-
ally used to minimize such cost functions. This paper sum-
marizes the formulation of iterative methods for image recon-
struction from non-Cartesian k-space samples, and describes
some of the benefits of iterative methods. The primary dis-
advantage of iterative methods is the increased computation
time, and methods for accelerating convergence are also dis-
cussed.

1. INTRODUCTION

For simplicity, in this summary we consider conventional slice-
selective 2D MRI. The extension to 3D is straightforward.

The goal in MR image reconstruction is to estimate the
transverse magnetizationf(~r) of an object from a finite set of
M noisy data samples:

yi = F (~νi) +εi, i = 1, . . . ,M, (1)

whereF (~ν) denotes the Fourier transform off for ~ν ∈ R
2,

defined as follows:

F (~ν) =

∫
R2

f(~r) e−ı2π~ν·~r d~r . (2)

For simplicity, we ignore field inhomogeneity effects; exten-
sions are available,e.g., [1, 2]. This problem is ill-posed be-
cause there are a multitude of continuous-space objectsf that
exactly match the measured datay = (y1, . . . , yM ). So in
some senseall MRI data is incomplete, and the notion of “par-
tial k-space sampling” is only a matter of degrees of partial-
ness.
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For ill-posed problems involving a continuous-space un-
known functionf but a finite-dimensional (discrete) data vec-
tor y, estimation methods can be categorized into three fam-
ilies of solutions. None of these formulations can be called
uniquely optimal.

1. Continuous-continuous formulations

In these methods, one first imagines that one has a con-
tinuum of measurements, solves the inverse problem
under that hypothetical scenario, and then discretizes
the solution so that only the available measurements are
used.

In MR, the natural hypothetical set of measurements is
the entire Fourier transformF (~ν) of the objectf(~r).
If F (~ν) were available, the “reconstruction method”
would be simply an inverse Fourier transform:

f(~r) =

∫
R2

F (~ν) eı2π~ν·~r d~ν .

For practical implementation one must discretize this
“solution” and replaceF (~νi) by the corresponding noisy
measurementyi as follows:

f̂(~r) =

M∑
i=1

yi eı2π~νi·~r wi, (3)

where{wi : i = 1, . . . ,M} are sampling density com-
pensation factors. This is the conjugate phase method
for image reconstruction. Numerous methods have been
proposed for choosing thewi factors, including itera-
tive methods,e.g., [3,4].

2. Continuous-discrete formulations

These methods attempt to formulate the problem di-
rectly using the continuous-discrete model (1). Because
there are a multitude of possible solutions, a typical ap-
proach is to choose, among those solutions that satisfy
(1) exactly, thef̂ that has minimum norm,e.g., [5].
However, one may question the appropriateness of in-
sisting on satisfying (1) exactly given the presence of
noise. And one may wonder if “minimum norm” is the
best criterion for choosing one MR image over other
possibilities.



The minimum norm solution turns out to have the form

f̂(~r) =

M∑
i=1

ci eı2π~νi·~r , (4)

where the coefficients{ci : i = 1, . . . ,M} are found
by solving aN×M system of linear equations. In other
words, the minimum norm estimate is a linear combina-
tion of complex exponentials. The frequencies of those
exponentials are those of the k-space sampling. One
may wonder if this set of complex exponentials is the
most appealing basis for representingf .

3. Discrete-discrete formulations

In these methods, we discretizef using a finite-series
expansion akin to (4) but with different basis functions.
We focus on this type of formulation hereafter.

1.1. Finite-series object model

For a finite-series approach, we first select somebasis func-
tions{bj(~r) : j = 1, . . . , N} and model the objectf as fol-
lows:

f(~r) ≈

N∑
j=1

xj bj(~r) . (5)

After adopting such a model, the reconstruction problem sim-
plifies to determining the vector of unknown coefficientsx =
(x1, . . . , xN ) from the measurement vectory.

Under this assumption, the discrete data, continuous ob-
ject model (1) simplifies to the following discrete-discrete
model:

y = Ax + ε, (6)

where theM × N system matrix A has elements

aij =

∫
bj(~r) e−ı2π~νi·~r d~r, (7)

for i = 1, . . . ,M andj = 1, . . . , N .
Usually the basis functions in (5) are chosen to be equally-

spaced translates of a pulse-like function such as a rectan-
gle or triangle, although more complicated choices such as
prolate spheroidal wave functions have also been used [6].
Specifically, usually we have

bj(~r) = b(~r − ~rj), j = 1, . . . , N, (8)

whereb(~r) denotes the common function that is translated to
~rj , the center of thejth basis function.

For basis functions of the form (8), by the shift property
of the Fourier transform, the elements ofA in (7) are simply

aij = B(~νi) e−ı2π~νi·~rj , (9)

whereB(~ν) is the2-dimensional Fourier transform ofb(~r).
In other words, the system matrixA has the following form:

A = BE, (10)

whereB is aM × M diagonal matrix:B = diag{B(~νi)},
andE ∈ C

M×N has elementsEij = e−ı2π~νi·~rj . In MRI, the
matrixE is sometimes called theFourier encoding matrix.

There are numerous possible choices of basis functions
b(~r) that have been used in various image reconstruction prob-
lems. Typically we simply use rect functions for simplicity,
corresponding to square pixels.

1.2. Least-squares reconstruction

Because the measurement noise in MRI is well modeled as
complex white gaussian noise, based on the model (6) it may
be tempting to apply a least-squares (LS) estimation method:

x̂ = arg min
x

‖y − Ax‖
2

= (A′A)−1A′y.

Indeed, for appropriate Cartesian sampling the matrixE in
(10) is orthogonal and satisfiesE−1 = 1

M
E∗ and in this case

the LS solution simplifies tôx = A−1y = 1
M

E∗B−1y,

which is essentially the conventional inverse FFT approach.
However, for non-Cartesian sampling, the matrixA is often
ill-conditioned or even singular, so the LS solution leads to
undesirable noise amplification.

1.3. Regularized least-squares methods

To control the noise of the LS estimator, one can modify the
cost function by including a regularization term:

x̂ = arg min
x

Ψ(x)

Ψ(x) =
1

2
‖y − Ax‖

2
W

+ β R(x), (11)

whereW is an optional weighting matrix discussed in more
detail below. The regularizerR(x) usually penalizes image
roughness, and the regularization parameterβ controls the
tradeoff between spatial resolution and noise. For example,
in 1D we might use the squared differences between neigh-
boring pixels:

R(x) =

N∑
j=2

1

2
(xj − xj−1)

2
.

Nonquadratic regularization is also used in ill-posed inverse
problems to better preserve edges. However, in non-Cartesian
MRI, often the sampling is good enough thatA is only some-
what poorly conditioned so relatively small values ofβ can be
used in which case quadratic regularization may be adequate.
A general form for a quadratic regularizer is

R(x) =
1

2
x′Rx,

whereR is the Hessian of the regularizer. For quadratic reg-
ularization, the minimization problem (11) has trhe following
explicit solution:

x̂ = arg min
x

Ψ(x) = [A′WA + R]−1A′Wy. (12)



However, the matrix inverse in this expression is very large
(N × N ), so in practice one usually computesx̂ by using an
iteration like theconjugate gradient algorithm to minimize
the cost function (11), as described below. And ifR(x) is
nonquadratic, there is no explicit expression forx̂, so iterative
methods are essential for computingx̂.

1.4. Choosing the regularization parameter

A common concern with regularized methods like (11) is choos-
ing the regularization parameterβ. Based on (12) we can an-
alyze the spatial resolution properties ofx̂ easily:

E[x̂] = [A′WA + βR]−1A′WAx.

Usually the matrixA′WA and the matrixR are Toeplitz, so
we can use FFTs to evaluate rapidly the PSF of this image
reconstruction method as a function ofβ. One can then vary
β and choose the value that yields the desired FWHM of the
local PSF [7].

2. ALGORITHM ACCELERATION

Because the data-fit term in (11) is quadratic, a natural iter-
ative minimization algorithm is the preconditionedconjugate
gradient (PCG) algorithm. The key step in any gradient-based
descent algorithm such as PCG is computing the gradient of
Ψ(x), which has the form

∇Ψ(x) = −A′W (y − Ax) + ∇R(x) . (13)

The computational bottlenecks are computing the matrix-vector
multiplication Ax and its transposeA′v, without storingA

or A′ explicitly.
Fortunately, there are efficient and very accurate algorithms

for computing these matrix-vector multiplications by using
nonuniformfast Fourier transform (NUFFT) approximations
[1,8]. Specifically, each multiplication byA or A′ requires an
over-sampled FFT and some simple interpolation operations.
(This operation is akin to “reverse gridding,”e.g., [9–11].)
One can precompute and store the interpolation coefficients
or compute them as needed [8]. Particularly efficient methods
are available for gaussian interpolation kernels [12]. Using
the optimization transfer techniques described in [13], non-
quadratic regularization can also be included.

2.1. Toeplitz embedding

Usually the weighting matrix is diagonal,i.e., W = diag{wi} .

In these cases, theGram matrix A′WA associated with the
norm term in (11) isblock Toeplitz with Toeplitz blocks, and
has elements

[A′WA]kj =

M∑
i=1

wi |B(~νi)|
2
e−ı2π~νi·(~rj−~rk) . (14)

By defining the Toeplitz matrixT = A′WA and the vector
b = A′Wy, we can rewrite the gradient expression (13) as:

∇Ψ(x) = Tx − b + ∇R(x) . (15)

The elements ofb ∈ C
N are given by

bj = [A′Wy]j =

M∑
i=1

wiyi e−ı2π~νi·~rj , j = 1, . . . , N.

We can precomputeb prior to iterating using an (adjoint)
NUFFT operation [8]. This calculation is similar to the grid-
ding reconstruction method. Each gradient calculation re-
quires multiplying theN × N block Toeplitz matrixT by
the current guess ofx. That operation can be performed ef-
ficiently by embedding T into a22N × 22N block circulant
matrix and applying a2-dimensional FFT [14]. This is called
theACT method in the band-limited signal interpolation liter-
ature [15,16], and it has also been applied to MR image recon-
struction both with [17,18] and without [19] an over-sampled
FFT. The first row of the circulant matrix is constructed by us-
ing 22−1 (adjoint) NUFFT calls to evaluate columns of (14).

Using the gradient expression (13) requires two NUFFT
operations per iteration. Each NUFFT requires an over-sampled
FFT and frequency-domain interpolations. In contrast, by us-
ing the Toeplitz approach (15), each iteration requires two
(double-sized) FFT operations. No interpolations are needed
except in the precomputing phase of buildingT andb. For
an accurate NUFFT, usually we oversample the FFT by a fac-
tor of two (in each dimension). Thus, the NUFFT approach
and the Toeplitz approach require exactly the same amount
of FFT effort, but the NUFFT approach has the disadvantage
of also requiring interpolations. The only apparent drawback
of the Toeplitz approach (15) is that it “squares the condition
number” of the problem so may be less numerically stable.
However, in most applications the measurement noise will
dominate the numerical noise, and to control measurement
noise one will need to include suitable regularization which
will also reduce the condition number.

Circulant preconditioners can accelerate the convergence
rate of the CG algorithm for such Toeplitz problems [14,20].

3. ISSUES

In the conjugate phase reconstruction method (3), the sam-
pling density compensation factors{wi} are essential and must
be chosen carefully. One advantage of iterative reconstruction
methods is that density compensation is not required. In fact,
because the gaussian noise in MRI, the Gauss-Markov theo-
rem from statistical estimation theory implies that one should
chooseW = I, the identity matrix, in the cost function (11).
Using any other choice may lead to increased noise of the
LS estimator. However, in the MR literature several papers
have reported usingW = diag{wi} for LS image recon-
struction. The purported benefits of this practice are “faster



convergence” and “better conditioning.” Often the CG algo-
rithm is initialized with an all zero image, and in that case
the first iteration of CG (for the unregularized case) yields
x(n)1 = A′Wy. Using W with density compensation will
usually improve the quality of this first iterate. However, that
is a weak rationale forcontinuing to useW even after the
first iteration. We recommend usingW for the first itera-
tion only, or equivalently, initializing CG with the CP recon-
struction, and then usingW = I thereafter. To improve the
conditioning of the problem, we recommend using regulariza-
tion instead of manipulatingW , again because of the Gauss-
Markov theorem.

Although the presentation in this summary has been for
a single receive coil, iterative methods generalize readily to
the case of parallel imaging. The matrixA′A in the case of
parallel imaging again is Toeplitz, facilitating algorithm ac-
celeration.

4. EXAMPLE

At the workshop we will illustrate the application of iterative
image reconstruction methods to non-Cartesian MR, includ-
ing for the challenging case of under-sampled k-space data.
Special regularization methods can help with under-sampled
data,e.g., [21].

Matlab software for iterative MR image reconstruction is
available [22].
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